

Werkstoff-Nr.: Kurzname:

BEW - Bezeichnung:

1.4409 GX2CrNiMo19-11-2

G4409

Chemische Zusammensetzung:

(Richtanalyse in %)

С	Cr	Мо	Ni		
≤ 0,03	19,00	2,25	10,50		

Werkstoffeigenschaften:

Korrosionsbeständiger, niedriggekohlter, Mo-legierter, austenitischer Stahlguss mit gezielt eingestelltem Delta-Ferritgehalt zur Optimierung der Herstellbarkeit und der Eigenschaften im Einsatz.

Verwendung:

Einsatz in Bereichen, bei denen eine hohe Korrosionsbeständigkeit gefordert wird, auch bei drucktragenden Teilen für Betriebstemperaturen bis 400°C.

Pumpenbau, Armaturenbau, chemische Industrie, Zellstoffindustrie, Farben- und Gummiindustrie, Meeresund Umwelttechnik, Maschinenbau, Zentrifugen, Rührwerke, Filterteile, Gehäuse, Behälter, Laufräder.

Lieferzustand:

Lösungsgeglüht

Physikalische Eigenschaften:

Wärmeausdehnungskoeffizient	<u>10⁻6⋅m</u>	20-100°C	20-300°C	20-500°C
warmeausuermungskoemzierit	m · K	15,8	17,0	17,7
M/ärm oloitfähiakoit	W	50°C	100°C	
Wärmeleitfähigkeit	m · K	14,5	15,8	
	J	20°C		
Spezifische Wärmekapazität	kg · K	530		
Diele	kg	20°C		
Dichte	dm ³	7,9		

Wärmebehandlung:

Läeungeglühen	Temperatur	Abkühlung	
Lösungsglühen	1080 - 1150°C	Wasser	

Mechanische Eigenschaften bei RT (nach DIN EN 10283, 06/2019):

Wanddicke [mm]	max.	150
0,2 % Dehngrenze R _{p 0,2} [N/mm²]	min.	195
1,0 % Dehngrenze R _{p 1,0} [N/mm²]	min.	220
Zugfestigkeit R _m [N/mm²]	min.	440
Bruchdehnung A [%]	min.	30
Kerbschlagarbeit ISO-V [J]	min.	80

Telefon: +49 (0) 2263 / 79 - 217

Telefax: +49 (0) 2263 / 79 - 407

(1.4409)

Korrosionsbeständigkeit:

Hohe Korrosionsbeständigkeit in zahlreichen, organischen und anorganischen Säuren, Mischsäuren und Salzlösungen, auch bei höherer

Konzentration und Temperatur.

Erhöhte Beständigkeit in Lochkorrosion aus-

lösenden, chloridhaltigen Medien.

Der niedrige C-Gehalt stabilisiert den Cr-Gehalt der Matrix, wodurch eine erhöhte Beständigkeit gegen interkristalline Korrosion erreicht wird.

Metallisch blanke Oberflächen ermöglichen einen größtmöglichen Widerstand gegen Korrosions-

angriff.

Pitting Resistant Equivalent

 $PRE = %Cr + 3,3 \cdot %Mo + 16 \cdot %N$

26,4 (Richtwert)

Schweißempfehlung:

Schweißprozess Lichtbogenhandschweißen (111)

MAG-Schweißen (135, 136) WIG-Schweißen (141)

Werkstoffzustand Lösungsgeglüht

Vorwärmen Ohne

Zwischenlagentemperatur max. 150°C

Keine Wärmenachbehandlung erforderlich. Beim Wärmenachbehandlung

Einsatz unter speziellen Korrosionsbedingungen und für Tieftemperaturanwendungen wird ein

erneutes Lösungsglühen empfohlen.

Besonderheiten Ein gezielt eingestellter Delta-Ferritgehalt im

Grundwerkstoff unterdrückt die Heißrissempfindlichkeit. Geringe Wärmeeinbringung vermeidet die Sensibilisierung für interkristalline

Korrosion.

Schweißzusatz DIN EN ISO 3581-A - E 19 12 3 L R 12

> DIN EN ISO 14343-A - G 19 12 3 L Si DIN EN ISO 14343-A - W 19 12 3 L Si